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Preface

This book is about the analytical and numerical tools for solving dynamic

economic problems. The main theme is to introduce recursive methods,

which should be in every economist’s toolkit. The main idea of recursive

methods is to characterize economic dynamics by a set of state variables

and a pair of functions. One function, called the state transition function,

maps the state and the control (or action) of the model today into the

state tomorrow. The other function, called the policy function, maps the

state into the control of the model. Economic data may come from either

a dynamic optimization problem or a market equilibrium. They can be

extremely complicated and hard to analyze. Using a finite number of state

variables and a pair of functions to summarize economic data simplifies the

analysis significantly.

The ultimate goal of this book is to introduce the reader how to apply

recursive methods to a variety of dynamic economic problems. To achieve

this goal, I first introduce the theory and numerical methods of solving linear

and nonlinear systems of deterministic and stochastic difference equations.

These systems can be derived from dynamic optimization or equilibrium

conditions. I then introduce the theory and numerical methods of solving

dynamic optimization problems. One powerful tool is dynamic program-

ming. Another powerful tool is the maximum principle or the Lagrange

method. Though this book focuses on the former tool, the connection be-

xi
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tween these two tools is discussed, and the latter tool is used whenever it is

more convenient.

An important feature of this book is that it combines theoretical foun-

dations with numerical methods. For each topic, I begin with theoretical

foundations with explicit definitions and rigorous proofs. I then introduce

numerical methods and computer codes to implement these methods. In ear-

lier years, it was quite cumbersome to numerically solve dynamic stochastic

general equilibrium (DSGE) models. Students and researchers found it hard

to replicate numerical results in published papers. This has been changed

since the 1990s. Researchers have developed efficient numerical methods

to solve medium to large scale DSGE models and to perform Bayesian es-

timation of these models. These methods have been made popular since

the launch of Dynare in the late 1990s. Dynare is a software platform for

handling a wide class of economic models, in particular, DSGE models and

overlapping generations (OLG) models. A large part of the book is to intro-

duce the reader how to use Dynare to numerically solve DSGE models and

to perform Bayesian estimation of DSGE models.

The book consists of five parts. Part I presents the theory of dynamical

systems and numerical methods of solving dynamical systems. This part lays

out the foundation for other parts of the book. Chapters 1 and 2 introduce

the analytical and numerical tools of solving deterministic and stochastic

linear and nonlinear systems of difference equations. These two chapters

also introduce how to use Dynare to implement the numerical methods.

Chapter 3 introduces the theory of Markov processes and their convergence.

This theory is important for setting up dynamic optimization problems.

Chapter 4 presents ergodic theory and stationary processes. Ergodic theory

is important for understanding long-run properties of stochastic processes

and has many applications in econometrics.
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Part II introduces the theory and applications of dynamic optimization.

Chapter 5 introduces how to set up a dynamic optimization problem in

terms of the Markov decision process model. Chapters 6 and 7 present the

theory of finite- and infinite-horizon dynamic programming, respectively.

These two chapters analyze the Bellman equation and properties of the

value function and of the policy function. The maximum principle and its

relation to dynamic programming are also discussed. Chapter 8 provides a

variety of applications of dynamic programming, including discrete choice,

consumption/saving, portfolio choice, inventory, and investment. Chapter

9 introduces linear-quadratic models and robust control. Applications to

policy analysis are discussed. In addition, the notion of commitment and

time inconsistency is presented. Chapter 10 presents filtering and control

under partial information. In particular, this chapter introduces the Kalman

filter, which is important for Bayesian estimation studied in Chapter 15.

Chapter 11 presents numerical methods for solving dynamic programming

problems. Projection methods, perturbation methods, and value function

iteration methods are stressed. Chapter 12 introduces methods of structural

estimation of dynamic programming problems. It focuses on the generalized

method of moments, the maximum likelihood method, and the simulated

method of moments.

Part III presents equilibrium analysis of a variety of core models in

macroeconomics. For each model, I start by describing its basic structure

and then discuss its various extensions. Chapter 13 describes models of com-

plete markets pure exchange economies. These models are useful for under-

standing consumption insurance and asset pricing. Chapter 14 introduces

neoclassical growth models. These models are the cornerstone of modern

macroeconomics. Chapter 15 introduces how to use Dynare to implement

Bayesian estimation of DSGE models. Chapter 16 presents overlapping gen-
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erations models. These models are fundamental in public finance and can

also generate asset price bubbles. Chapter 17 studies a particular type of

incomplete markets models, the Bewley-Aiyagari-Huggett model. In this

model, market incompleteness comes from missing markets. Chapter 18

introduces search and matching models. These models are useful for under-

standing unemployment. Chapter 19 presents the dynamic New Keynesian

models. These models are useful for understanding inflation and monetary

policy.

Part IV studies three additional topics. Chapter 20 describes recursive

utility. Recursive utility has become increasingly popular in finance and

macroeconomics because recursive methods, such as dynamic programming,

can be tractably applied. I embed a variety of static utility models from

decision theory in the dynamic framework of recursive utility. These static

models typically depart from the rational expectations hypothesis and are

motivated by experimental evidence such as the Allais paradox and the

Ellsberg paradox. Embedding them in the framework of recursive utility

allows them to be used to address many dynamic asset pricing puzzles.

Chapter 21 presents dynamic games and credible government policies.

The main tool of the analysis is developed by Abreu, Pearce, and Stacchetti

(henceforth, APS) (1990). This tool is a significant breakthrough in the

application of recursive methods. Unlike the traditional method of dynamic

programming based on the Bellman equation, the object of the APS method

is sets, instead of functions. The key idea is to use the continuation value as

a state variable to make the problem recursive. Chapter 22 introduces recur-

sive contracts. Models with incentive problems are hard to analyze because

of the history dependence of contracts. Spear and Srivastava (1987), Thomas

and Worrall (1988), and APS (1990) make a significant breakthrough by in-

corporating the continuation value promised by the principal to the agent



PREFACE xv

as a state variable in order to make the problem recursive.

Part V contains four mathematical appendixes which present basic con-

cepts and results from linear algebra, real and functional analysis, convex

analysis, and measure and probability theory. I have tried to make this book

self-contained by collecting all necessary mathematical concepts and results

beyond the undergraduate analysis, linear algebra, and probability theory

in the appendixes.

This book uses many Matlab programs to solve various examples and

exercises. These programs are referred to in a special index at the end of

the book. They can be downloaded from the website ???...

Other books whose treatments overlap with some of the topics covered

here include Sargent (1987), Blanchard and Fischer (1989), Stokey, Lu-

cas, and Prescott (1989), Cooley (1995), Farmer (1993), Azariadis (1993),

Chow (1997), Judd (1998), Miranda and Fackler (2002), Adda and Cooper

(2003), Woodford (2003), Hansen and Sargent (2008), Acemoglu (2008),

Walsh (2010), DeJong and Dave (2011), Romer (2012), and Ljungqvist and

Sargent (2012).

Each of the above books has its own aims and themes. What is new

about this book is the emphasis on the balance between analytical and nu-

merical methods and the up-to-date treatment of the recent developments in

economic dynamics. Theoretical results are stated as propositions or theo-

rems and proved rigorously. Numerical methods are presented with theoreti-

cal foundations and their computer implementations are provided whenever

possible. Since the late 1990s, the field of economic dynamics has devel-

oped rapidly. I have tried to incorporate some recent developments, such

as numerical methods for solving linear and nonlinear rational expectations

models, robust control, Bayesian estimation of DSGE models, perturbation

methods, projection methods, asset price bubbles, recursive models of am-
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biguity and robustness, recursive utility, and recursive contracts.

This book focuses on the analytical and numerical tools, rather than em-

pirical applications. Thus, I do not present data analysis and do not discuss

how to tie the theory to the data. The book focuses exclusively on discrete-

time models. Many basic ideas for discrete-time models can be applied to

continuous time. I decide to treat continuous-time problems elsewhere, al-

though continuous-time models typically admit closed-form solutions and

are analytically convenient in many contexts, especially, in the theory of

finance and economic growth. I also leave out some important topics such

as endogenous growth, fiscal policy, and optimal taxation.

While most applications in the book focus on macroeconomics, the the-

ory and methods should be valuable in other fields of economics. For ex-

ample, the theory and numerical methods of dynamic programming can be

applied to analyze any dynamic optimization problems in any field of eco-

nomics. The treatment of dynamic games and recursive contracts in Chap-

ters 21 and 22 should be of interest to game theorists. The introduction of

recursive utility in Chapter 20 should be valuable in decision theory. The

discussion of asset pricing in Chapters 13 and 20 is useful in finance.

This book can be used for various courses. Here are some examples:

• A one-semester first-year graduate macroeconomics course: Chapters

1-3, 5-7, and 13-16.

• A second-semester first-year graduate macroeconomics course: Chap-

ters 8-9, 11, 17-19, and any one from Chapters 20-22.

• A graduate course on economic dynamics: The core materials are in

Parts I and II. Instructors can select any chapters from the remaining

parts depending on the students’ interest.
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• A second-year graduate course on topics in macroeconomics or finan-

cial economics: Any chapters from Parts III and IV.

I have benefited from research collaboration over the years with many

coauthors, including Rui Albuquerque, Dan Bernhardt, Hui Chen, Larry

Epstein, Zhigang Feng, Francois Gourio, Xin Guo, Dirk Hackbarth, Nengjiu

Ju, Larry Kotlikoff, Erwan Morellec, Adrian Peralta-Alva, Manuel Santos,

Hayashi Takashi, Neng Wang, Pengfei Wang, Danyang Xie, Lifang Xu, Zhi-

wei Xu, and Hao Zhou.

This book is based on my lecture notes for the graduate course, Economic

Dynamics, I have taught at Boston University for about 9 years. I thank

Bob King for suggesting and encouraging me to create this course. I also

thank many students at Boston University and Central University of Finance

and Economics for comments on the book. I would especially like to thank

Brittany Baumann, Chenyu Hui, Yue Jiang, Hyosung Kwon, Xiao Yang, and

Fan Zhuo. I appreciate the comments of outside reviewers and the editorial

staff at the MIT Press. Finally, I deeply appreciate the support from my

wife, Qian Jiang, during my writing of this book. Without her support, the

book cannot be completed.
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Part I

Dynamical Systems

1





3

The dynamics of economic variables are typically described by the fol-

lowing system of p-order difference equations:

xt+p = f (xt, xt+1, ..., xt+p−1, zt, zt+1, ..., zt+p−1) , (1)

where f : Rnp × Rnzp → Rn, xt ∈ Rn, zt ∈ Rnz for all t = 0, 1, ..., and n,

nz and p are natural numbers. The vector zt consists of exogenously given

forcing variables. We need to impose certain initial or terminal conditions

to solve (1). These conditions typically depend on the economic problems

at hand. By an appropriate change of variables, we can often transform

(1) into a system of first-order difference equations. If the sequence {zt} is

deterministic, then (1) is a deterministic system. In Chapter 1, we study

this case. If {zt} is a stochastic process, then (1) is a stochastic system. In

this case, we introduce an information structure and require f to satisfy cer-

tain measurability condition. In a dynamic economy, economic agents must

form expectations about future variables. If system (1) characterizes a ra-

tional expectations equilibrium, we must introduce conditional expectations

into this system. We study the stochastic case in Chapter 2. Researchers

typically use a recursive approach to study dynamic equilibria. Under this

approach, equilibrium variables typically satisfy certain Markov properties.

In Chapter 3, we study Markov processes and their convergence. A central

issue is the existence and uniqueness of a stationary distribution. In Chap-

ter 4, we discuss ergodic theory and its applications to stationary processes.

We establish several strong laws of large numbers for stationary processes

and for Markov processes in particular.
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Chapter 1

Deterministic Difference
Equations

In this chapter, we focus on deterministic dynamics characterized by systems

of first-order linear difference equations. We distinguish between singular

and nonsingular systems because different solution methods are applied to

these two cases. We also introduce lag operators and apply them to solve

second-order linear difference equations. Finally, we provide a brief intro-

duction to nonlinear dynamics.

1.1 Scalar First-Order Linear Equations

Consider the following scalar first-order linear difference equation:

xt+1 = bxt + czt, t ≥ 0, (1.1)

where xt, b, c, and zt are all real numbers. Assume that {zt} is an exoge-

nously given bounded sequence. If zt is constant for each t, then (1.1) is

autonomous. When czt = 0 for all t, we call (1.1) a homogeneous differ-

ence equation. These concepts can be generalized to systems of high-order

difference equations introduced later.

In the autonomous case, we may suppose zt = 1 for all t in (1.1) without

5
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loss of generality. We then obtain

xt+1 = bxt + c. (1.2)

A particular solution to this difference equation is a constant solution xt = x̄

for all t, where

x̄ =
c

1− b
, for b 6= 1.

This solution is called a stationary point or steady state. One can verify

that the general solution to (1.2) is given by

xt = (x0 − x̄) bt + x̄. (1.3)

We are interested in the long-run behavior of this solution:

• If |b| < 1, then the solution in (1.3) converges asymptotically to the

steady state x̄ for any initial value x0. In this case, we call x̄ a globally

asymptotically stable steady state. If x0 is not exogenously given,

then the solution is indeterminate. Starting from any initial value

x0, equation (1.3) gives a solution to (1.2).

• If |b| > 1, then the solution in (1.3) explodes or is unstable for any

given initial value x0 6= x̄, unless x0 = x̄. In this case, we often assume

that x0 is unknown and solve for the entire path of xt. The only stable

solution is xt = x̄ for all t ≥ 0.

In the nonautonomous case, we may solve for {xt} in two ways depending

on whether or not the initial value x0 is exogenously given. First, consider

the case in which x0 is exogenously given. Then we solve for xt backward

by repeated substitution to obtain the backward-looking solution:

xt = c
t−1X

j=0

bjzt−1−j + btx0. (1.4)
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If |b| < 1, then

lim
t→∞

xt = lim
t→∞

c

t−1X

j=0

bjzt−1−j , (1.5)

where a finite limit exists because we assume {zt} is a bounded sequence.

Thus, for any given initial value x0, the difference equation in (1.1) has a

solution for {xt} , which converges to a finite limit in (1.5). We call this

limit a generalized steady state. It is globally asymptotically stable. If

|b| > 1, then (1.4) shows that {xt} diverges. If |b| = 1, then the solution

does not converge to a finite limit unless
P∞

j=0 zj is finite. Even if a finite

limit exists, it depends on the initial condition x0 so that the solution is not

globally stable.

Second, suppose that x0 is not exogenously given. For example, xt repre-

sents an asset’s price. Let b be the gross return and −czt > 0 be the asset’s

dividends. Then equation (1.1) is an asset pricing equation. We may solve

for xt forward by repeated substitution:

xt =

�
1

b

�T

xt+T − c

b

T−1X

j=0

�
1

b

�j

zt+j , (1.6)

for any T ≥ 1. Taking T → ∞ and assuming the transversality condition

(or no-bubble condition),

lim
T→∞

�
1

b

�T

xt+T = 0, (1.7)

we obtain the forward-looking solution:

xt = −c

b

∞X

j=0

�
1

b

�j

zt+j . (1.8)

If |b| > 1, then the above infinite sum is finite since {zt} is a bounded se-

quence. Clearly, the above solution also satisfies the transversality condition

(1.7). This solution is stable in the sense that xt is bounded for all t ≥ 0.
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If we remove the transversality condition (1.7), then (1.1) admits many

unstable solutions. Let x∗t denote the solution given by (1.8). Then for any

Bt satisfying

Bt+1 = bBt, (1.9)

the expression, xt = x∗t + Bt, is a solution to (1.1). We often call x∗t the

fundamental solution and Bt a bubble. The bubble grows at the gross rate

b.

If |b| < 1, then the infinite sum in (1.8) is unlikely to converge in general.

There is an infinity of bubble solutions, which are globally stable rather than

exploding. For example, let zt = 1 for all t, then the expression below is a

solution to (1.1):

xt =
c

1− b
+Bt,

where Bt satisfies (1.9) and B0 is any given value. This is related to indeter-

minacy discussed earlier for the autonomous system. Theorem 1.4.3 studied

later will consider more general cases.

Example 1.1.1 Asset prices under adapted versus rational expectations.

Consider the following asset pricing equation:

pt =
tp

e
t+1 + d

R
, (1.10)

where d represents constant dividends, R is the gross return on the asset,

pt is the asset price in period t, and tp
e
t+1 is investors’ period-t forecast of

the price in period t+1. An important question is how to form this forecast.

According to the adapted expectations hypothesis, the forecast satisfies

tp
e
t+1 = (1− λ) t−1p

e
t + λpt, (1.11)

where λ ∈ (0, 1) . This means that investors’ current forecast of the next-

period price is equal to a weighted average of the current price and the
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previous-period forecast of the current price. Using equation (1.10) to sub-

stitute for tp
e
t+1 and t−1p

e
t into equation (1.11), we obtain

Rpt − d = (1− λ) (Rpt−1 − d) + λpt.

Simplifying yields:

(R− λ) pt = (1− λ)Rpt−1 + λd.

Solving this equation backward until time 0, we obtain the backward-

looking solution:

pt = atp0 +

(
1− at

�
d

R− 1
,

where a = R(1−λ)
R−λ . We need to assign an exogenously given initial value p0.

For this solution to be stable, we must assume that |a| < 1. In this case,

pt converges to its steady state value p̄ = d/ (R− 1) , starting at any initial

value p0.

We next turn to the case under rational expectations. In a deterministic

model, rational expectations mean perfect foresight in the sense that tp
e
t+1 =

pt+1. That is, investors’ rational forecast of the future price is identical to

its true value. In this case, we rewrite (1.10) as:

pt =
pt+1 + d

R
, (1.12)

Solving this equation forward, we obtain:

pt =
d

R− 1
+ lim

T→∞

pt+T

RT
.

Ruling out bubbles, we obtain the forward-looking solution, pt = d/ (R− 1) ,

t ≥ 0. This means that the stock price in each period is always equal to the

constant fundamental value.

Example 1.1.2 Dividend taxes
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Suppose that dividends are taxed at the constant rate τ1 from time 0 to

time T. From time T +1 on, the dividend tax rate is increased to τ2 forever.

Suppose that this policy is publicly announced at time 0. What will happen

to the stock price at time 0? Given the rational expectations hypothesis, we

solve the price at time T :

pT =
(1− τ2) d

R− 1
.

At time 0, we use equation (1.6) to derive the forward-looking solution:

p0 =
1

RT
pT +

1

R

T−1X

j=0

(1− τ1) d

Rj

=
(1− τ1) d

R− 1
+

1

RT

�
(1− τ2) d

R− 1
− (1− τ1) d

R− 1

�
.

Thus, the stock price drops immediately at time 0 and then continuously

declines until it reaches the new fundamental value. Figure 1.1 shows a nu-

merical example. The dashed and solid lines represent the price path without

and with tax changes, respectively.

In this section, we have shown that two conditions are important for

solving a linear difference equation: (i) whether the initial value is given;

and (ii) whether the coefficient b is smaller than one in absolute value. We

will show below that similar conditions apply to general multivariate linear

systems. In particular, the first condition determines whether the variable

xt is predetermined, and the second condition corresponds to whether the

eigenvalue is stable.

1.2 Lag Operators

Lag operators provide a powerful tool for solving difference equations. They

are also useful for analyzing economic dynamics and time series economet-

rics. We now introduce these operators.1

1We refer readers to Sargent (1987) and Hamilton (1994) for a further introduction.
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0 T t

p
t

Figure 1.1: The impact of dividend taxes on the stock price.

Consider a sequence {Xt}∞t=−∞ . The lag operator L on this sequence is

defined by

LXt = Xt−1, LnXt = Xt−n, for all n = ...,−2,−1, 0, 1, 2, ....

In addition, Lnc = c for any constant c that is independent of time. The

following formulas are useful in applications:

1

1− λLn
=

∞X

j=0

λjLnj,

1

(1− λLn)2
=

∞X

j=0

(j + 1)λjLnj,

for |λ| < 1, and

(I −ALn)−1 =
∞X

j=0

AjLnj,




